
Chapter 13

Priority Queues

Concepts:
. Priority queues
. Heaps
. Skew heaps
. Sorting with heaps
. Simulation

“Exactly!” said Mr. Wonka.
“I decided to invite five children

to the factory, and the one I liked best
at the end of the day

would be the winner!”
—Roald Dahl

SOMETIMES A RESTRICTED INTERFACE IS A FEATURE. The priority queue, like an
ordered structure, appears to keep its data in order. Unlike an ordered structure,
however, the priority queue allows the user only to access its smallest element.
The priority queue is also similar to the Linear structure: values are added to
the structure, and they later may be inspected or removed. Unlike their Linear
counterpart, however, once a value is added to the priority queue it may only
be removed if it is the minimum value.1 It is precisely this restricted interface
to the priority queue that allows many of its implementations to run quickly.

Priority queues are used to schedule processes in an operating system, to
schedule future events in a simulation, and to generally rank choices that are Think triage.
generated out of order.

13.1 The Interface

Because we will see many contrasting implementations of the priority queue
structure, we describe it as abstractly as possible in Java—with an interface:

PriorityQueue

public interface PriorityQueue<E extends Comparable<E>>

{

public E getFirst();

// pre: !isEmpty()

// post: returns the minimum value in priority queue

public E remove();

1 We will consider priority queues whose elements are ranked in ascending order. It is, of course,
possible to maintain these queues in descending order with only a few modifications.



316 Priority Queues

// pre: !isEmpty()

// post: returns and removes minimum value from queue

public void add(E value);

// pre: value is non-null comparable

// post: value is added to priority queue

public boolean isEmpty();

// post: returns true iff no elements are in queue

public int size();

// post: returns number of elements within queue

public void clear();

// post: removes all elements from queue

}

Because they must be kept in order, the elements of a PriorityQueue are
Comparable. In this interface the smallest values are found near the front of
the queue and will be removed soonest.2 The add operation is used to insert
a new value into the queue. At any time a reference to the minimum value
can be obtained with the getFirst method and is removed with remove. The
remaining methods are similar to those we have seen before.

Notice that the PriorityQueue does not extend any of the interfaces we
have seen previously. First, as a matter of convenience, PriorityQueue methods
consume Comparable parameters and return Comparable values. Most struc-
tures we have encountered manipulate unconstrained generic Objects. Though
similar, the PriorityQueue is not a Queue. There is, for example, no dequeue

method. Though this might be remedied, it is clear that the PriorityQueue

need not act like a first-in, first-out structure. At any time, the value about to
be removed is the current minimum value. This value might have been the
first value inserted, or it might have just recently “cut in line” before larger val-
ues. Still, the priority queue is just as general as the stack and queue since,
with a little work, one can associate with inserted values a priority that forces
any Linear behavior in a PriorityQueue. Finally, since the PriorityQueue

has no elements method, it may not be traversed and, therefore, cannot be a
Collection.

Exercise 13.1 An alternative definition of a PriorityQueue might not take and
return Comparable values. Instead, the constructor for a PriorityQueue could be
made to take a Comparator. Recall that the compare method of the Comparator

class needn’t take a Comparable value. Consider this alternative definition. Will
the code be simpler? When would we expect errors to be detected?

2 If explicit priorities are to be associated with values, the user may insert a ComparableAssoci-

ation whose key value is a Comparable such as an Integer. In this case, the associated value—the
data element—need not be Comparable.



13.2 Example: Improving the Huffman Code 317

The simplicity of the abstract priority queue makes its implementation rela-
tively straightforward. In this chapter we will consider three implementations:
one based on use of an OrderedStructure and two based on a novel structure
called a heap. First, we consider an example that emphasizes the simplicity of
our interface.

13.2 Example: Improving the Huffman Code

In the Huffman example from Section 12.8 we kept track of a pool of trees.
At each iteration of the tree-merging phase of the algorithm, the two lightest-
weight trees were removed from the pool and merged. There, we used an
OrderedStructure to maintain the collection of trees:

Huffman

OrderedList<huffmanTree> trees = new OrderedList<huffmanTree>();

// merge trees in pairs until one remains

Iterator ti = trees.iterator();

while (trees.size() > 1)

{

// construct a new iterator

ti = trees.iterator();

// grab two smallest values

huffmanTree smallest = (huffmanTree)ti.next();

huffmanTree small = (huffmanTree)ti.next();

// remove them

trees.remove(smallest);

trees.remove(small);

// add bigger tree containing both

trees.add(new huffmanTree(smallest,small));

}

// print only tree in list

ti = trees.iterator();

Assert.condition(ti.hasNext(),"Huffman tree exists.");

huffmanTree encoding = (huffmanTree)ti.next();

To remove the two smallest objects from the OrderedStructure, we must con-
struct an Iterator and indirectly remove the first two elements we encounter.
This code can be greatly simplified by storing the trees in a PriorityQueue. We
then remove the two minimum values:

Huffman2

PriorityQueue<huffmanTree> trees = new PriorityVector<huffmanTree>();

// merge trees in pairs until one remains

while (trees.size() > 1)

{

// grab two smallest values

huffmanTree smallest = (huffmanTree)trees.remove();

huffmanTree small = (huffmanTree)trees.remove();

// add bigger tree containing both

trees.add(new huffmanTree(smallest,small));



318 Priority Queues

}

huffmanTree encoding = trees.remove();

After the merging is complete, access to the final result is also improved.
A number of interesting algorithms must have access to the minimum of a

collection of values, and yet do not require the collection to be sorted. The
extra energy required by an OrderedVector to keep all the values in order may,
in fact, be excessive for some purposes.

13.3 A Vector-Based Implementation

Perhaps the simplest implementation of a PriorityQueue is to keep all the val-
ues in ascending order in a Vector. Of course, the constructor is responsible for
initialization:

Priority-

Vector

protected Vector<E> data;

public PriorityVector()

// post: constructs a new priority queue

{

data = new Vector<E>();

}

From the standpoint of adding values to the structure, the priority queue
is very similar to the implementation of the OrderedVector structure. In fact,
the implementations of the add method and the “helper” method indexOf are
similar to those described in Section 11.2.2. Still, values of a priority queue are
removed in a manner that differs from that seen in the OrderedVector. They
are not removed by value. Instead, getFirst and the parameterless remove

operate on the Vector element that is smallest (leftmost). The implementation
of these routines is straightforward:

public E getFirst()

// pre: !isEmpty()

// post: returns the minimum value in the priority queue

{

return data.get(0);

}

public E remove()

// pre: !isEmpty()

// post: removes and returns minimum value in priority queue

{

return data.remove(0);

}

The getFirst operation takes constant time. The remove operation caches and
removes the first value of the Vector with a linear-time complexity. This can-



13.4 A Heap Implementation 319

not be easily avoided since the cost is inherent in the way we use the Vector

(though see Problem 13.8).
It is interesting to see the evolution of the various types encountered in

the discussion of the PriorityVector. Although the Vector took an entire
chapter to investigate, the abstract notion of a vector seems to be a relatively
natural structure here. Abstraction has allowed us to avoid considering the
minute details of the implementation. For example, we assume that Vectors
automatically extend themselves. The abstract notion of an OrderedVector, on
the other hand, appears to be insufficient to directly support the specification of
the PriorityVector. The reason is that the OrderedVector does not support
Vector operations like the index-based get(i) and remove(i). These could, of
course, be added to the OrderedVector interface, but an appeal for symmetry
might then suggest implementation of the method add(i). This would be a
poor decision since it would then allow the user to insert elements out of order.

Principle 21 Avoid unnaturally extending a natural interface.
N

NW

SW
SE

NE

W
S

E

Designers of data structures spend considerable time weighing these design
trade-offs. While it is tempting to make the most versatile structures support
a wide variety of extensions, it surrenders the interface distinctions between
structures that often allow for novel, efficient, and safe implementations.

Exercise 13.2 Although the OrderedVector class does not directly support the
PriorityQueue interface, it nonetheless can be used in a protected manner. Im-
plement the PriorityVector using a protected OrderedVector? What are the
advantages and disadvantages?

In Section 13.4 we discuss a rich class of structures that allow us to maintain
a loose ordering among elements. It turns out that even a loose ordering is
sufficient to implement priority queues.

13.4 A Heap Implementation

In actuality, it is not necessary to develop a complete ranking of the elements
of the priority queue in order to support the necessary operations. It is only
necessary to be able to quickly identify the minimum value and to maintain a
relatively loose ordering of the remaining values. This realization is the motiva-
tion for a structure called a heap.

Definition 13.1 A heap is a binary tree whose root references the minimum value
and whose subtrees are, themselves, heaps.

An alternate definition is also sometimes useful.

Definition 13.2 A heap is a binary tree whose values are in ascending order on
every path from root to leaf.



320 Priority Queues

2

1

3

2

2

1

3

2

22

3

11

2

2 3

(a) (b) (c) (d)

Figure 13.1 Four heaps containing the same values. Note that there is no ordering
among siblings. Only heap (b) is complete.

We will draw our heaps in the manner shown in Figure 13.1, with the mini-
mum value on the top and the possibly larger values below. Notice that each of
the four heaps contains the same values but has a different structure. Clearly,
there is a great deal of freedom in the way that the heap can be oriented—for
example, exchanging subtrees does not violate the heap property (heaps (c)
and (d) are mirror images of each other). While not every tree with these four
values is a heap, many are (see Problems 13.17 and 13.18). This flexibility
reduces the friction associated with constructing and maintaining a valid heap
and, therefore, a valid priority queue. When friction is reduced, we have the
potential for increasing the speed of some operations.

Principle 22 Seek structures with reduced friction.

N

NW

SW
SE

NE

W

S

E

We will say that a heap is a complete heap if the binary tree holding the valuesThis is
completely

obvious.
of the heap is complete. Any set of n values may be stored in a complete heap.
(To see this we need only sort the values into ascending order and place them
in level order in a complete binary tree. Since the values were inserted in as-
cending order, every child is at least as great as its parent.) The abstract notion
of a complete heap forms the basis for the first of two heap implementations of
a priority queue.

13.4.1 Vector-Based Heaps

As we saw in Section 12.9 when we considered the implementation of Ah-
nentafel structures, any complete binary tree (and therefore any complete heap)
may be stored compactly in a vector. The method involves traversing the tree in
level order and mapping the values to successive slots of the vector. When we
are finished with this construction, we observe the following (see Figure 13.2):

1. The root of the tree is stored in location 0. If non-null, this location
references the minimum value of the heap.



13.4 A Heap Implementation 321

1

3 2

4

43

65 58 40 42

0 1 43 3 2 65 58 40 42 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-1

0

-1

3

3

Figure 13.2 An abstract heap (top) and its vector representation. Arrows from parent
to child are not physically part of the vector, but are indices computed by the heap’s left
and right methods.

2. The left child of a value stored in location i is found at location 2i + 1.

3. The right child of a value stored in location i may be found at the location
following the left child, location 2(i + 1) = (2i + 1) + 1.

4. The parent of a value found in location i can be found at location b i−1
2 c.

Since division of integers in Java-like languages throws away the remain-
der for positive numbers, this expression is written (i-1)/2.

These relations may, of course, be encoded as functions. In Figure 13.2 we see
the mapping of a heap to a vector, with tree relations indicated by arrows in the
vector. Notice that while the vector is not maintained in ascending order, any
path from the root to a leaf encounters values in ascending order. If the vector is
larger than necessary, slots not associated with tree nodes can maintain a null

reference. With this mapping in mind, we consider the constructor and static

methods:

VectorHeap

protected Vector<E> data; // the data, kept in heap order

public VectorHeap()

// post: constructs a new priority queue

{

data = new Vector<E>();

}



322 Priority Queues

public VectorHeap(Vector<E> v)

// post: constructs a new priority queue from an unordered vector

{

int i;

data = new Vector<E>(v.size()); // we know ultimate size

for (i = 0; i < v.size(); i++)

{ // add elements to heap

add(v.get(i));

}

}

protected static int parent(int i)

// pre: 0 <= i < size

// post: returns parent of node at location i

{

return (i-1)/2;

}

protected static int left(int i)

// pre: 0 <= i < size

// post: returns index of left child of node at location i

{

return 2*i+1;

}

protected static int right(int i)

// pre: 0 <= i < size

// post: returns index of right child of node at location i

{

return 2*(i+1);

}

The functions parent, left, and right are declared static to indicate that
they do not actually have to be called on any instance of a heap. Instead, their
values are functions of their parameters only.

Principle 23 Declare object-independent functions static.
N

NW

SW
SE

NE

W

S

E

Now consider the addition of a value to a complete heap. We know that
the heap is currently complete. Ideally, after the addition of the value the heap
will remain complete but will contain one extra value. This realization forces
us to commit to inserting a value in a way that ultimately produces a correctly
structured heap. Since the first free element of the Vector will hold a value,
we optimistically insert the new value in that location (see Figure 13.3). If,
considering the path from the leaf to the root, the value is in the wrong location,
then it must be “percolated upward” to the correct entry. We begin by comparing
and, if necessary, exchanging the new value and its parent. If the values along
the path are still incorrectly ordered, it must be because of the new value, and
we continue to percolate the value upward until either the new value is the



13.4 A Heap Implementation 323

root or it is greater than or equal to its current parent. The only values possibly
exchanged in this operation are those appearing along the unique path from the
insertion point. Since locations that change only become smaller, the integrity
of other paths in the tree is maintained.

The code associated with percolating a value upward is contained in the
function percolateUp. This function takes an index of a value that is possibly
out of place and pushes the value upward toward the root until it reaches the
correct location. While the routine takes an index as a parameter, the parameter
passed is usually the index of the rightmost leaf of the bottom level.

protected void percolateUp(int leaf)

// pre: 0 <= leaf < size

// post: moves node at index leaf up to appropriate position

{

int parent = parent(leaf);

E value = data.get(leaf);

while (leaf > 0 &&

(value.compareTo(data.get(parent)) < 0))

{

data.set(leaf,data.get(parent));

leaf = parent;

parent = parent(leaf);

}

data.set(leaf,value);

}

Adding a value to the priority queue is then only a matter of appending it to
the end of the vector (the location of the newly added leaf) and percolating the
value upward until it finds the correct location.

public void add(E value)

// pre: value is non-null comparable

// post: value is added to priority queue

{

data.add(value);

percolateUp(data.size()-1);

}

Let us consider how long it takes to accomplish the addition of a value to the
heap. Remember that the tree that we are working with is an n-node complete
binary tree, so its height is blog2 nc. Each step of the percolateUp routine takes
constant time and pushes the new value up one level. Of course, it may be
positioned correctly the first time, but the worst-case behavior of inserting the
new value into the tree consumes O(log n) time. This performance is consid-
erably better than the linear behavior of the PriorityVector implementation
described in Section 13.3. What is the best time? It is constant when the value
added is large compared to the values found on the path from the new leaf to
the root. What is the

expected time?
Be careful!



324 Priority Queues

−1

10

2

4

43

65 58 40 42

2

3

−1 0 1 43 2 65 58 40 42 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 3

2−1 0 1 43 3 2 65 58 40 42 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

3 2

4

43

65 58 40 42 2

−1

0

3

3

3

3

(a) Before

(b) After

Figure 13.3 The addition of a value (2) to a vector-based heap. (a) The value is
inserted into a free location known to be part of the result structure. (b) The value is
percolated up to the correct location on the unique path to the root.



13.4 A Heap Implementation 325

Next, we consider the removal of the minimum value (see Figures 13.4 and
13.5). It is located at the root of the heap, in the first slot of the vector. The
removal of this value leaves an empty location at the top of the heap. Ultimately,
when the operation is complete, the freed location will be the rightmost leaf of
the bottom level, the last element of the underlying vector. Again, our approach
is first to construct a tree that is the correct shape, but potentially not a heap,
and then perform transformations on the tree that both maintain its shape and We’re “heaping

in shape.”bring the structure closer to being a heap. Thus, when the minimum value is
removed, the rightmost leaf on the bottom level is removed and re-placed at
the root of the tree (Figure 13.4a and b). At this point, the tree is the correct
shape, but it may not be a heap because the root of the tree is potentially too
large. Since the subtrees remain heaps, we need to ensure the root of the tree
is the minimum value contained in the tree. We first find the minimum child
and compare this value with the root (Figure 13.5a). If the root value is no
greater, the minimum value is at the root and the entire structure is a heap.
If the root is larger, then it is exchanged with the true minimum—the smallest
child—pushing the large value downward. At this point, the root of the tree has
the correct value. All but one of the subtrees are unchanged, and the shape of
the tree remains correct. All that has happened is that a large value has been
pushed down to where it may violate the heap property in a subtree. We then
perform any further exchanges recursively, with the value sinking into smaller
subtrees (Figure 13.5b), possibly becoming a leaf. Since any single value is a
heap, the recursion must stop by the time the newly inserted value becomes a
leaf.

Here is the code associated with the pushing down of the root:

protected void pushDownRoot(int root)

// pre: 0 <= root < size

// post: moves node at index root down

// to appropriate position in subtree

{

int heapSize = data.size();

E value = data.get(root);

while (root < heapSize) {

int childpos = left(root);

if (childpos < heapSize)

{

if ((right(root) < heapSize) &&

((data.get(childpos+1)).compareTo

(data.get(childpos)) < 0))

{

childpos++;

}

// Assert: childpos indexes smaller of two children

if ((data.get(childpos)).compareTo

(value) < 0)

{

data.set(root,data.get(childpos));



326 Priority Queues

root = childpos; // keep moving down

} else { // found right location

data.set(root,value);

return;

}

} else { // at a leaf! insert and halt

data.set(root,value);

return;

}

}

}

The remove method simply involves returning the smallest value of the heap,
but only after the rightmost element of the vector has been pushed downward.

public E remove()

// pre: !isEmpty()

// post: returns and removes minimum value from queue

{

E minVal = getFirst();

data.set(0,data.get(data.size()-1));

data.setSize(data.size()-1);

if (data.size() > 1) pushDownRoot(0);

return minVal;

}

Each iteration in pushDownRoot pushes a large value down into a smaller heap
on a path from the root to a leaf. Therefore, the performance of remove is
O(log n), an improvement over the behavior of the PriorityVector implemen-
tation.

Since we have implemented all the required methods of the PriorityQueue,
the VectorHeap implements the PriorityQueue and may be used wherever a
priority queue is required.

The advantages of the VectorHeap mechanism are that, because of the
unique mapping of complete trees to the Vector, it is unnecessary to explicitly
store the connections between elements. Even though we are able to get im-
proved performance over the PriorityVector, we do not have to pay a space
penalty. The complexity arises, instead, in the code necessary to support the
insertion and removal of values.

13.4.2 Example: Heapsort

Any priority queue, of course, can be used as the underlying data structure
for a sorting mechanism. When the values of a heap are stored in a Vector,
an empty location is potentially made available when they are removed. This
location could be used to store a removed value. As the heap shrinks, the values
are stored in the newly vacated elements of the Vector. As the heap becomes
empty, the Vector is completely filled with values in descending order.



13.4 A Heap Implementation 327

1

3 2

4

43

65 58 40 42

0

-1

3

0 1 43 2 65 58 40 42 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-1 33

0 1 43 2 65 58 40 42 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

33

1

3 2

4

43

65 58 40 42

0

3

(a)

(b)

Figure 13.4 Removing a value from the heap shown in (a) involves moving the right-
most value of the vector to the top of the heap as in (b). Note that this value is likely to
violate the heap property but that the subtrees will remain heaps.



328 Priority Queues

1

3 2

65

43

42

0

4

3

58 40

1

3 243

65 58 40 42

3

0

4

(b)

1 43 65 58 40 42
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

30 3 4 2

(a)

0 1 43 2 65 58 40 42
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

34 3

Figure 13.5 Removing a value (continued). In (a) the newly inserted value at the
root is pushed down along a shaded path following the smallest children (lightly shaded
nodes are also considered in determining the path). In (b) the root value finds, over
several iterations, the correct location along the path. Smaller values shift upward to
make room for the new value.



13.4 A Heap Implementation 329

Unfortunately, we cannot make assumptions about the structure of the val-
ues initially found in the Vector; we are, after all, sorting them. Since this
approach depends on the values being placed in a heap, we must consider
one more operation: a constructor that “heapifies” the data found in a Vector

passed to it:

public VectorHeap(Vector<E> v)

// post: constructs a new priority queue from an unordered vector

{

int i;

data = new Vector<E>(v.size()); // we know ultimate size

for (i = 0; i < v.size(); i++)

{ // add elements to heap

add(v.get(i));

}

}

The process of constructing a heap from an unordered Vector obviously takes
the time of n add operations, each of which is O(log n). The worst-case cost
of “heapifying” is, therefore, O(n log n). (This can be improved—see Prob-
lem 13.10.)

Now, the remaining part of the heapsort—removing the minimum values
and placing them in the newly freed locations—requires n remove operations.
This phase also has worst-case complexity O(n log n). We have, therefore, an-
other sorting algorithm with O(n log n) behavior and little space overhead.

The feature of a heap that makes the sort so efficient is its short height. The
values are always stored in as full a tree as possible and, as a result, we may
place a logarithmic upper bound on the time it takes to insert and remove val-
ues. In Section 13.4.3 we investigate the use of unrestricted heaps to implement
priority queues. These structures have amortized cost that is equivalent to heaps
built atop vectors.

13.4.3 Skew Heaps

The performance of Vector-based heaps is directly dependent on the fact that
these heaps are complete. Since complete heaps are a minority of all heaps, it
is reasonable to ask if efficient priority queues might be constructed from unre-
stricted heaps. The answer is yes, if we relax the way we measure performance.

We consider, here, the implementation of heaps using dynamically struc-
tured binary trees. A direct cost of this decision is the increase in space. Whereas
a Vector stores a single reference, the binary tree node keeps an additional
three references. These three references allow us to implement noncomplete
heaps, called skew heaps, in a space-efficient manner (see Problem 13.21). Here
are the protected data and the constructor for this structure:

SkewHeap

protected BinaryTree<E> root;



330 Priority Queues

protected final BinaryTree<E> EMPTY = new BinaryTree<E>();

protected int count;

public SkewHeap()

// post: creates an empty priority queue

{

root = EMPTY;

count = 0;

}

Notice that we keep track of the size of the heap locally, rather than asking the
BinaryTree for its size. This is simply a matter of efficiency, but it requires us
to maintain the value within the add and remove procedures. Once we commit
to implementing heaps in this manner, we need to consider the implementation
of each of the major operators.

The implementation of getFirst simply references the value stored at the
root. Its implementation is relatively straightforward:

public E getFirst()

// pre: !isEmpty()

// post: returns the minimum value in priority queue

{

return root.value();

}

Before we consider the implementation of the add and remove methods, we
consider a (seemingly unnecessary) operation, merge. This method takes twoAs with all good

things, this will
eventually seem

necessary.

heaps and merges them together. This is a destructive operation: the elements
of the participating heaps are consumed in the construction of the result. Our
approach will be to make merge a recursive method that considers several cases.
First, if either of the two heaps participating in the merge is empty, then the
result of the merge is the other heap. Otherwise, both heaps contain at least a
value—assume that the minimum root is found in the left heap (if not, we can
swap them). We know, then, that the result of the merge will be a reference to
the root node of the left heap. To see how the right heap is merged into the left
we consider two cases:

1. If the left heap has no left child, make the right heap the left child of the
left heap (see Figure 13.6b).

2. Otherwise, exchange the left and right children of the left heap. Then
merge (the newly made) left subheap of the left heap with the right heap
(see Figure 13.6d).

Notice that if the left heap has one subheap, the right heap becomes the left
subheap and the merging is finished. Here is the code for the merge method:



13.4 A Heap Implementation 331

Left

1 3

3

(a)

(b)

(c)

3

1

1 1

1

10

3

10

(d)

+

+

+

+

+

1

1

3

3
1

Left Right Result

Left Right Result

Left Right Result

ResultRight

Figure 13.6 Different cases of the merge method for SkewHeaps. In (a) one of the
heaps is empty. In (b) and (c) the right heap becomes the left child of the left heap. In
(d) the right heap is merged into what was the right subheap.



332 Priority Queues

protected static <E extends Comparable<E>>

BinaryTree<E> merge(BinaryTree<E> left, BinaryTree<E> right)

{

if (left.isEmpty()) return right;

if (right.isEmpty()) return left;

E leftVal = left.value();

E rightVal = right.value();

BinaryTree<E> result;

if (rightVal.compareTo(leftVal) < 0)

{

result = merge(right,left);

} else {

result = left;

// assertion left side is smaller than right

// left is new root

if (result.left().isEmpty())

{

result.setLeft(right);

} else {

BinaryTree<E> temp = result.right();

result.setRight(result.left());

result.setLeft(merge(temp,right));

}

}

return result;

}

Once the merge method has been defined, we find that the process of adding
a value or removing the minimum is relatively straightforward. To add a value,
we construct a new BinaryTree containing the single value that is to be added.
This is, in essence, a one-element heap. We then merge this heap with the
existing heap, and the result is a new heap with the value added:

public void add(E value)

// pre: value is non-null comparable

// post: value is added to priority queue

{

BinaryTree<E> smallTree = new BinaryTree<E>(value,EMPTY,EMPTY);

root = merge(smallTree,root);

count++;

}

To remove the minimum value from the heap we must extract and return
the value at the root. To construct the smaller resulting heap we detach both
subtrees from the root and merge them together. The result is a heap with all
the values of the left and right subtrees, but not the root. This is precisely the
result we require. Here is the code:

public E remove()

// pre: !isEmpty()



13.5 Example: Circuit Simulation 333

2

101

output
input 0

Figure 13.7 A circuit for detecting a rising logic level.

// post: returns and removes minimum value from queue

{

E result = root.value();

root = merge(root.left(),root.right());

count--;

return result;

}

The remaining priority queue methods for skew heaps are implemented in a
relatively straightforward manner.

Because a skew heap has unconstrained topology (see Problem 13.16), it
is possible to construct examples of skew heaps with degenerate behavior. For
example, adding a new maximum value can take O(n) time. For this reason
we cannot put very impressive bounds on the performance of any individual
operation. The skew heap, however, is an example of a self-organizing structure:
inefficient operations spend some of their excess time making later operations
run more quickly. If we are careful, time “charged against” early operations can
be amortized or redistributed to later operations, which we hope will run very
efficiently. This type of analysis can be used, for example, to demonstrate that
m > n skew heap operations applied to a heap of size n take no more than
O(m log n) time. On average, then, each operation takes O(log n) time. For
applications where it is expected that a significant number of requests of a heap
will be made, this performance is appealing.

13.5 Example: Circuit Simulation

Consider the electronic digital circuit depicted in Figure 13.7. The two devices
shown are logic gates. The wires between the gates propagate electrical signals.
Typically a zero voltage is called false or low, while a potential of 3 volts or more
is true or high.

The triangular gate, on the left, is an inverter. On its output (pin 0) it “in-
verts” the logic level found on the input (pin 1): false becomes true and true
becomes false. The gate on the right is an and-gate. It generates a true on pin 0
exactly when both of its inputs (pins 1 and 2) are true.



334 Priority Queues

The action of these gates is the result of a physical process, so the effect
of the inputs on the output is delayed by a period of time called a gate delay.
Gate delays depend on the complexity of the gate, the manufacturing process,
and environmental factors. For our purposes, we’ll assume the gate delay of the
inverter is 0.2 nanosecond (ns) and the delay of the and-gate is 0.8 ns.

The question is, what output is generated when we toggle the input from
low to high and back to low several times? To determine the answer we can
build the circuit, or simulate it in software. For reasons that will become clear
in a moment, simulation will be more useful.

The setup for our simulation will consist of a number of small classes. First,
there are a number of components, including an Inverter; an And; an input, or
Source; and a voltage sensor, or Probe. When constructed, gates are provided
gate delay values, and Sources and Probes are given names. Each of these
components has one or more pins to which wires can be connected. (As with
real circuits, the outputs should connect only to inputs of other components!)
Finally, the voltage level of a particular pin can be set to a particular level. As
an example of the interface, we list the public methods for the And gate:

Circuit

class And extends Component

{

public And(double delay)

// pre: delay >= 0.0ns

// post: constructs and gate with indicated gate delay

public void set(double time, int pinNum, int level)

// pre: pinNum = 1 or 2, level = 0/3

// post: updates inputs and generates events on

// devices connected to output

}

Notice that there is a time associated with the set method. This helps us doc-
ument when different events happen in the component. These events are sim-
ulated by a comparable Event class. This class describes a change in logic level
on an input pin for some component. As the simulation progresses, Events are
created and scheduled for simulation in the future. The ordering of Events is
based on an event time. Here are the details:

class Event implements Comparable<Event>

{

protected double time; // time of event

protected int level; // voltage level

protected Connection c; // gate/pin

public Event(Connection c, double t, int l)

// pre: c is a valid pin on a gate

// post: constructs event for time t to set pin to level l

{

this.c = c;



13.5 Example: Circuit Simulation 335

time = t;

level = l;

}

public void go()

// post: informs target component of updated logic on pin

{

c.component().set(time,c.pin(),level);

}

public int compareTo(Event other)

// pre: other is non-null

// post: returns integer representing relation between values

{

Event that = (Event)other;

if (this.time < that.time) return -1;

else if (this.time == that.time) return 0;

else return 1;

}

}

The Connection mentioned here is simply a component’s input pin.
Finally, to orchestrate the simulation, we use a priority queue to correctly

simulate the order of events. The following method simulates a circuit by re-
moving events from the priority queue and setting the logic level on the appro-
priate pins of the components. The method returns the time of the last event to
help monitor the progress of the simulation.

public class Circuit

{

static PriorityQueue<Event> eventQueue; // main event queue

public static double simulate()

// post: run simulation until event queue is empty;

// returns final clock time

{

double low = 0.0; // voltage of low logic

double high = 3.0; // voltage of high logic

double clock = 0.0;

while (!eventQueue.isEmpty())

{ // remove next event

Event e = eventQueue.remove();

// keep track of time

clock = e.time;

// simulate the event

e.go();

}

System.out.println("-- circuit stable after "+clock+" ns --");

return clock;

}



336 Priority Queues

}

As events are processed, the logic level on a component’s pins are updated. If
the inputs to a component change, new Events are scheduled one gate delay
later for each component connected to the output pin. For Sources and Probes,
we write a message to the output indicating the change in logic level. Clearly,
when there are no more events in the priority queue, the simulated circuit is
stable. If the user is interested, he or she can change the logic level of a Source

and resume the simulation by running the simulate method again.
We are now equipped to simulate the circuit of Figure 13.7. The first portion

of the following code sets up the circuit, while the second half simulates the
effect of toggling the input several times:

public static void main(String[] args)

{

int low = 0; // voltage of low logic

int high = 3; // voltage of high logic

eventQueue = new SkewHeap<Event>();

double time;

// set up circuit

Inverter not = new Inverter(0.2);

And and = new And(0.8);

Probe output = new Probe("output");

Source input = new Source("input",not.pin(1));

input.connectTo(and.pin(2));

not.connectTo(and.pin(1));

and.connectTo(output.pin(1));

// simulate circuit

time = simulate();

input.set(time+1.0,0,high); // first: set input high

time = simulate();

input.set(time+1.0,0,low); // later: set input low

time = simulate();

input.set(time+1.0,0,high); // later: set input high

time = simulate();

input.set(time+1.0,0,low); // later: set input low

simulate();

}

When run, the following output is generated:

1.0 ns: output now 0 volts

-- circuit stable after 1.0 ns --

2.0 ns: input set to 3 volts

2.8 ns: output now 3 volts

3.0 ns: output now 0 volts



13.6 Conclusions 337

-- circuit stable after 3.0 ns --

4.0 ns: input set to 0 volts

-- circuit stable after 5.0 ns --

6.0 ns: input set to 3 volts

6.8 ns: output now 3 volts

7.0 ns: output now 0 volts

-- circuit stable after 7.0 ns --

8.0 ns: input set to 0 volts

-- circuit stable after 9.0 ns --

When the input is moved from low to high, a short spike is generated on the
output. Moving the input to low again has no impact. The spike is generated by
the rising edge of a signal, and its width is determined by the gate delay of the
inverter. Because the spike is so short, it would have been difficult to detect it
using real hardware.3 Devices similar to this edge detector are important tools
for detecting changing states in the circuits they monitor.

13.6 Conclusions

We have seen three implementations of priority queues: one based on a Vector

that keeps its entries in order and two others based on heap implementations.
The Vector implementation demonstrates how any ordered structure may be
adapted to support the operations of a priority queue.

Heaps form successful implementations of priority queues because they relax
the conditions on “keeping data in priority order.” Instead of maintaining data
in sorted order, heaps maintain a competition between values that becomes
progressively more intense as the values reach the front of the queue. The cost
of inserting and removing values from a heap can be made to be as low as
O(log n).

If the constraint of keeping values in a Vector is too much (it may be im-
possible, for example, to allocate a single large chunk of memory), or if one
wants to avoid the uneven cost of extending a Vector, a dynamic mechanism is
useful. The SkewHeap is such a mechanism, keeping data in general heap form.
Over a number of operations the skew heap performs as well as the traditional
Vector-based implementation.

Self Check Problems

Solutions to these problems begin on page 449.

13.1 Is a PriorityQueue a Queue?

13.2 Is a PriorityQueue a Linear structure?

3 This is a very short period of time. During the time the output is high, light travels just over
2 inches!



338 Priority Queues

13.3 How do you interpret the weight of a Huffman tree? How do you
interpret the depth of a node in the tree?

13.4 What is a min-heap?

13.5 Vector-based heaps have O(log n) behavior for insertion and removal
of values. What structural feature of the underlying tree guarantees this?

13.6 Why is a PriorityQueue useful for managing simulations base on events?

Problems

Solutions to the odd-numbered problems begin on page 481.

13.1 Draw the state of a HeapVector after each of the values 3, 4, 7, 0, 2, 8,
and 6 are added, in that order.

13.2 Consider the heap 0 2 1 3 7 4 6 8

a. What does this heap look like when drawn as a tree?

b. What does this heap look like (in array form) when a value is removed?

13.3 Below is a SkewHeap. What does it look like after a value is removed?

3

0

1

4 5 2 4

13.4 How might you use priorities to simulate a LIFO structure with a priority
queue?

13.5 Is a VectorHeap a Queue? Is it an OrderedStructure?

13.6 How might you use priorities to simulate a FIFO structure with a priority
queue?

13.7 Suppose a user built an object whose compareTo and equals methods
were inconsistent. For example, values that were equals might also return a
negative value for compareTo. What happens when these values are added to a
PriorityVector? What happens when these values are added to a SkewHeap?

13.8 We have seen that the cost of removing a value from the Priority-

Vector takes linear time. If elements were stored in descending order, this
could be reduced to constant time. Compare the ascending and descending
implementations, discussing the circumstances that suggest the use of one im-
plementation over the other.

13.9 What methods would have to be added to the OrderedVector class to
make it possible to implement a PriorityVector using only a private Ordered-

Vector?



13.6 Conclusions 339

13.10 Reconsider the “heapifying” constructor discussed in Section 13.4.2. In-
stead of adding n values to an initially empty heap (at a cost of O(n log n)),
suppose we do the following: Consider each interior node of the heap in order
of decreasing array index. Think of this interior node as the root of a poten-
tial subheap. We know that its subtrees are valid heaps. Now, just push this
node down into its (near-)heap. Show that the cost of performing this heapify
operation is linear in the size of the Vector.

13.11 Design a more efficient version of HeapVector that keeps its values
in order only when necessary: When values are added, they are appended to
the end of the existing heap and a nonHeap flag is set to true. When values
are removed, the nonHeap flag is checked and the Vector is heapified if nec-
essary. What are the worst-case and best-case running times of the add and
remove operations? (You may assume that you have access to the heapify of
Problem 13.10.)

13.12 Consider the unordered data:
4 2 7 3 1 0 5 6

What does this Vector look like after it has been heapified?

13.13 Consider the in-place Vector-based heapsort.

a. A min-heap is particularly suited to sorting data in place into which order:
ascending or descending?

b. What is the worst-case time complexity of this sort?

c. What is the best-case time complexity of this sort?

13.14 Suppose we are given access to a min-heap, but not the code that sup-
ports it. What changes to the comparable data might we make to force the
min-heap to work like a max-heap?

13.15 Suppose we are to find the kth largest element of a heap of n values.
Describe how we might accomplish this efficiently. What is the worst-case run-
ning time of your method? Notice that if the problem had said “set of n values,”
we would require a heapify operation like that found in Problem 13.10.

13.16 Demonstrate that any binary tree that has the heap property can be
generated by inserting values into a skew heap in an appropriate order. (This
realization is important to understanding why an amortized accounting scheme
is necessary.)

13.17 Suppose you are given n distinct values to store in a full heap—a heap
that is maintained in a full binary tree. Since there is no ordering between
children in a heap, the left and right subheaps can be exchanged. How many
equivalent heaps can be produced by only swapping children of a node?

13.18 Given n distinct values to be stored in a heap, how many heaps can
store the values? (Difficult.)

13.19 What proportion of the binary trees holding n distinct values are heaps?



340 Priority Queues

13.20 Suppose that n randomly selected (and uniformly distributed) numbers
are inserted into a complete heap. Now, select another number and insert it into
the heap. How many levels is the new number expected to rise?

13.21 The mapping strategy that takes a complete binary tree to a vector can
actually be used to store general trees, albeit in a space-inefficient manner. The
strategy is to allocate enough space to hold the lowest, rightmost leaf, and to
maintain null references in nodes that are not currently being used. What is the
worst-case Vector length needed to store an n-element binary tree?

13.22 Write an equals method for a PriorityVector. It returns true if each
pair of corresponding elements removed from the structures would be equal.
What is the complexity of the equals method? (Hint: You may not need to
remove values.)

13.23 Write an equals method for a HeapVector. It returns true if each pair
of corresponding elements removed from the structures would be equal. What is
the complexity of the equals method? (Hint: You may need to remove values.)

13.24 Write an equals method for a SkewHeap. It returns true if each pair of
corresponding elements removed from the structures would be equal. What is
the complexity of the equals method? (Hint: You may need to remove values.)

13.25 Show that the implementation of the PriorityVector can be improved
by not actually keeping the values in order. Instead, only maintain the mini-
mum value at the left. Demonstrate the implementation of the add and remove

methods.

13.26 Suppose you are a manufacturer of premium-quality videocassette re-
corders. Your XJ-6 recorder allows the “user” to “program” 4096 different future
events to be recorded. Of course, as the time arrives for each event, your ma-
chine is responsible for turning on and recording a program.

a. What information is necessary to correctly record an event?

b. Design the data structure(s) needed to support the XJ-6.



13.7 Laboratory: Simulating Business

Objective. To determine if it is better to have single or multiple service lines.
Discussion. When we are waiting in a fast food line, or we are queued up at a
bank, there are usually two different methods of managing customers:

1. Have a single line for people waiting for service. Every customer waits in
a single line. When a teller becomes free, the customer at the head of the
queue moves to the teller. If there are multiple tellers free, one is picked
randomly.

2. Have multiple lines—one for each teller. When customers come in the
door they attempt to pick the line that has the shortest wait. This usu-
ally involves standing in the line with the fewest customers. If there are
multiple choices, the appropriate line is selected randomly.

It is not clear which of these two methods of queuing customers is most effi-
cient. In the single-queue technique, tellers appear to be constantly busy and
no customer is served before any customer that arrives later. In the multiple-
queue technique, however, customers can take the responsibility of evaluating
the queues themselves.

Note, by the way, that some industries (airlines, for example) have a mixture
of both of these situations. First class customers enter in one line, while coach
customers enter in another.
Procedure. In this lab, you are to construct a simulation of these two service
mechanisms. For each simulation you should generate a sequence of customers
that arrive at random intervals. These customers demand a small range of ser-
vices, determined by a randomly selected service time. The simulation is driven
by an event queue, whose elements are ranked by the event time. The type of
event might be a customer arrival, a teller freeing up, etc.

For the single line simulation, have the customers all line up in a single
queue. When a customer is needed, a single customer (if any) is removed from
the customer queue, and the teller is scheduled to be free at a time that is
determined by the service time. You must figure out how to deal with tellers
that are idle—how do they wait until a customer arrives?

For the multiple line simulation, the customers line up at their arrival time,
in one of the shortest teller queues. When a teller is free, it selects the next
customer from its dedicated queue (if any). A single event queue is used to
drive the simulation.

To compare the possibilities of these two simulations, it is useful to run the
same random customers through both types of queues. Think carefully about
how this might be accomplished.
Thought Questions. Consider the following questions as you complete the lab:

1. Run several simulations of both types of queues. Which queue strategy
seems to process all the customers fastest?



342 Priority Queues

2. Is their a difference between the average wait time for customers between
the two techniques?

3. Suppose you simulated the ability to jump between lines in a multiple line
simulation. When a line has two or more customers than another line,
customers move from the end one line to another until the lines are fairly
even. You see this behavior frequently at grocery stores. Does this change
the type of underlying structure you use to keep customers in line?

4. Suppose lines were dedicated to serving customers of varying lengths of
service times. Would this improve the average wait time for a customer?

Notes:


